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Abstract - This paper discusses an inverse solution consisting of the boundary condition estimation
and the phase change front identification in continuous casting process. The solution procedure utilizes
sensitivity coefficients and temperature measurements inside the solid phase. The algorithms proposed
make use of the Boundary Element Method (BEM) in both 2D and 3D case. With the purpose of
limiting a number of estimated values (and consequently the number of temperature sensors) the Bezier
splines (in 2D case) and the Bezier surfaces (in 3D case) are employed for modelling the interface between
the solid and liquid phases. For the same reason heat flux distribution along the cooling boundary is
approximated using spline function or broken line. In order to demonstrate the main advantages of the
developed formulation, continuous casting of copper was considered as a numerical example.

Keywords - inverse geometry problem, inverse boundary problem, sensitivity coefficients, BEM solution
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1. INTRODUCTION
Growing demand for high-quality alloys possessing specific properties stimulates frequent application
of the continuous casting process in the metallurgical industry. In order to be able to guarantee the
required quality of the casted metal, the whole casting process must be carefully controlled, including
proper designing of the cooling system. This is the reason why an accurate determination of the location
of the interface between liquid and solid phases were considered in this work. The proposed numerical
procedures are based on the sensitivity analysis and boundary element method [6, 1, 9, 12].

The solidification of metal or alloy takes place in a mould (crystallizer) cooled by a flowing water.
The liquid material flows into the mould having the walls cooled by flowing water. The solidifying ingot
is pulled out of the mould by withdrawal rolls. It is also very intensively cooled outside the crystallizer
(by water sprayed over the surface).

These problems were the topics of works dealing with the boundary and the geometry inverse problems
formulated as 2D ones [11, 7, 13, 10, 8]. The boundary inverse problem consisted of the determination of
the heat flux distribution along outer boundary of the ingot. The numerical procedures and the results
obtained were presented in [11]. The geometry inverse problem concerned the estimation of the location
of the phase change front. The publications [8, 7] discuss the details of the solution algorithms and
method of modelling the interface shape. The influence of the number and accuracy of measurements
were also investigated. Particularly, attention was paid to the application of the Bezier splines for the
phase change front approximation [10] and using sensitivity analysis leading to the determination of the
sensitivity coefficients (in case of the quadratic or cubic boundary elements) [8, 10].

The same approach is continuously discussed in the presented paper. Bezier surfaces being 3D gener-
alization of 2-dimensional Bezier splines are applied in both inverse boundary and/or inverse geometry
problems. The Bezier splines or surfaces approximate the real phase change front whose shape and
location are controlled by coordinates of the Bezier control points.

It has to be stressed that the mathematical model of the inverse boundary problem as well as inverse
geometry problem include the solid ingot only. It means that the problem is solved for the solid phase and
its interaction with the liquid phase manifests itself in the collected temperature measurements. Taking
all these into account this paper should be seen as a natural extension of the developed algorithms for
the 3D cases for both boundary and geometrical inverse problems.
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2. PROBLEM FORMULATION
A brief description of the mathematical model of the direct heat transfer problem for the continuous
casting process is discussed in the first part of this section. This model serves as a basis for the both
inverse boundary and inverse geometry problems.

The mathematical description of the considered phenomena, defined as the 3D steady-state diffusion-
convection heat transfer, consists of:

• a convection-diffusion equation for the solid ingot:

∇2 T (r) − 1
a

vx
∂T

∂x
= 0 (1)

where T (r) is the temperature at point r, vx stands for the casting velocity (assumed to be constant
and having only one component along the x-direction) and a is the thermal diffusivity of the solid
phase.

• boundary conditions defining the heat transfer process along the boundaries (Figure 1), including
the specification of the melting temperature along the phase change front:

T (r) = Tm, r ε ΓABCD (2)

−λ
∂T

∂n
= q(r), r ε ΓABFE ∪ ΓBCGF (3)

T (r) = Ts, r ε ΓEFGH (4)

−λ
∂T

∂n
= 0, r ε ΓADHE ∪ ΓDCGH (5)

where Tm stands for the melting temperature, Ts is the ingot temperature while leaving the system,
λ is the thermal conductivity and q is the heat flux. Both symbols Tm and Ts represent constant
temperatures.

Figure 1: Scheme of the 3D domain of continuous casting system .

In the inverse analysis, some information within the mathematical model of the direct heat transfer
problem is unknown or uncertain. This means that such mathematical description needs to be sup-
plemented by the measurements. In the majority of considered examples these measurement data are
numerically simulated, although it is also possible to use measurements obtained through experiment,
e.g. [13].

In the inverse heat transfer problem for continuous casting the location of the phase change surface
ΓABCD (where the temperature is equal to the melting one) or the heat flux along surfaces ΓABFE and
ΓBCGH is unknown. In order to complete the mathematical model, it is assumed that the temperatures Ui

were measured inside the ingot using the technique known as L-rod technique [3, 4]. These measurements
are then collected in a vector U.
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Depending on the type of the inverse problem (boundary or geometry one), the objective is to estimate
the identified values uniquely describing the location of the phase change front or the heat flux distribution
along the side surfaces. These identified values are collected in the vector Y = [y1, . . . , yn]T .

In the boundary inverse problems components of vector Y are connected to the heat flux distribution.
In case of the geometry inverse problem this vector contains components defining the location of the
phase change front. In both cases they are the coordinates of the Bezier control points. To provide
a distinction of the two kinds of inverse problem, components yj can be denoted by qj for the inverse
boundary or vj for the inverse geometry problem. The ways of modelling both quantities are discussed
in the subsequent section.

Because of the ill-posed nature of all inverse problems, the number of measurements should be appro-
priate to make the problem overdetermined. This is achieved by using a number of measurement points
greater than the number of design variables. Thus, in general, inverse analysis leads to the optimization
procedures with least squares calculations of the objective functions ∆. However, in the cases studied
here, an additional term needed to improve stability was also introduced [9, 6], i.e.

∆ = (Tcal − U)T W−1 (Tcal −U) +(
Y − Ỹ

)T

W−1
Y

(
Y − Ỹ

)
→ min (6)

where vector Tcal contains temperatures calculated at the sensor locations, U stands for the vector of
temperature measurements and superscript T denotes transpose matrices. The symbol W denotes the
covariance matrix of measurements. Thus, the contribution of more accurately measured data is stronger
than the data obtained with lower accuracy. Known prior estimates of design vector components are
collected in vector Ỹ, and WY stands for the covariance matrix of prior estimates. The coefficients
of the matrix WY have to be large enough to catch the minimum (these coefficients tend to infinity if
prior estimates are not known). It was found that the additional term in the objective function place
similar role to the regularisation term in other approaches. Containing prior estimates, this term is very
important in the inverse analysis, since it considerably improves the stability and accuracy of the inverse
procedure.

Generally, the inverse problem is solved by building up a series of direct solutions which gradually
approach the correct values of design variables. This procedure can be expressed by the following main
steps:

1. make the boundary problem well-posed. This means that the mathematical description of the
thermal process is completed by assuming arbitrary but known values Y∗ (as required by the direct
problem).

2. solve the direct problem obtained above and calculate temperatures T∗ at the sensor locations; com-
pare these temperatures and measured values U and modify the assumed data y∗j , j = 1, 2, . . . , n;
if the inverse problem is non-linear (i.e. geometrical one) this point should be repeated until vj

converges [8, 7, 10].

It is also possible to define an inverse problem as a combination of both boundary and geometry
one. In such an approach the above algorithm has to be expanded. Step 2. is now split into boundary
and geometry substeps in which values connected with the first substep are estimated keeping values
connected with the second one unchanged. Details of such methodology were presented in [13].

For all kinds of inverse problems, the above algorithm applies the sensitivity analysis and the mini-
mization of the objective function (6) leading to the following set of equations [9, 8]:(

ZT W−1 Z + W−1
Y

)
Y = ZT W−1

(
U − T∗

)
+(

ZT W−1 Z
)

Y∗ + W−1
Y Ỹ (7)

where the sensitivity coefficients (determined at the measurement points) are collected in the matrix Z.
The sensitivity coefficients, as the main concept of the sensitivity analysis are the derivatives of the

temperature at point i with respect to the identified value at point j, i.e.

Zij =
∂ Ti

∂ yj
(8)

The sensitivity coefficients provide a measure of each identified value and indicate how much it should
be modified due to change of temperature differences.
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The sensitivity coefficients are obtained by solving a set of auxiliary direct problems in succession.
Each of these direct problems arise through differentiation of equation (1) and corresponding boundary
conditions (2)−(5) with respect to the particular component of the vector Y. For the sake of different
nature of both kinds of problems, it is necessary to build and solve different direct problems connected
with yj values.

In this work, the BEM [1, 12] is applied for solving both the direct thermal and the sensitivity
coefficient problem. The main advantage of using this method is the simplification in meshing since only
the boundary has to be discretized. This is particularly important in the inverse geometry problems in
which the geometry of the body is modified within each iteration step. Furthermore, the location of the
internal measurement sensors does not affect the discretization. Finally, in the heat transfer analysis,
the BEM solution directly provides temperatures and heat fluxes, which are both required by the inverse
solution. In other words, the numerical differentiation of temperature (i.e., numerical calculations of the
heat fluxes) is not needed.

The BEM system of equations has boundary-only form for both the thermal and the sensitivity
coefficient problems

HT = GQ (9)
HZ = GQZ (10)

where H and G stand for the BEM influence matrices. Depending on the dimensionality of the problem,
the fundamental solution to the convection-diffusion equation is expressed by the following formulae
[1, 12]

u∗ =


1

2πλ
exp

(
−vx rx

2a

)
K0

(
|vx| r
2a

)
2–D

1
4πrλ

exp
[
vx (r − rx)

2a

]
3–D

(11)

where K0 stands for the Bessel function of the second kind and zero order, r is the distance between
source and field points, with its component along the x-axis denoted by rx.

3. DETERMINATION OF IDENTIFIED VALUES
As mentioned before, the ill-conditioned nature of all inverse problems requires that they have to be made
overdetermined. On the other hand, it is very important to limit the number of sensors, mainly because
of practical difficulties connected with measurement acquisition. Application of Bezier splines or surfaces
allows the modelling of the phase change front using a considerably smaller number of design variables
as well as the approximation the heat flux distribution by broken line or some spline functions.

Application of Bezier splines/surfaces - Application of the Bezier splines/surfaces allows to define
a location of the phase change front together with the limitation of the number of identified values.

In 2D problem the Bezier curves are applied. They are made up of the cubic segments based on four
control points V0, V1, V2 and V3. The following formula presents the definition of the cubic Bezier
segments:

P(u) = (1− u)3 V0 + 3 (1− u)2 uV1 +
3 (1− u) u2 V2 + u3 V3 (12)

where P(u) stands for any point on the Bezier curve, and u varies in the range [0,1], [5].
Numerical experiments have shown that the Bezier curve composed of two cubic segments satisfactorily

approximates the phase change front [2]. Apart from limitations of the identified values, the application of
the Bezier curves (cubic polynomials) has to ensure smoothness of the boundary. The collinear location
of appropriate control points makes the whole boundary smooth even at points which are shared by
neighbouring segments [10].

The vector Y = [y1, . . . , y2n]T can be written as Y = [vx
1 , vy

1 . . . , vx
n, vy

n]T where vx
i , vy

i are the x and
y coordinates of the given control point. Actually, some of these coordinates are defined by additional
conditions resulting from the physical nature of the problem. In consequence, the number of identified
values can be limited to ten [7, 10], which also means a reduction of the number of required measurements.
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In 3D approach, a location of the phase change front is described by the Bezier surface. This is a 3D
equivalent of the Bezier splines applied in 2D problems.

Again the shape and location of the Bezier surface is defined by the control points. In this case there
are 16 points V00, V01, V02, V03, V10, V11, V12, V13, V20, V21, V22, V23, V30, V31, V32, V33 and
the following formulae present the definition of the Bezier surface:

P(u, v) =


V00 V01 V02 V03

V10 V11 V12 V13

V20 V21 V22 V23

V30 V31 V32 V33

 ·


(1− u)3

3 (1− u)2 u
3 (1− u) u2

u3

 ·


(1− v)3

3 (1− v)2 v
3 (1− v) v2

v3


T

(13)

where P(u, v) stands for any point on the Bezier surface, u and v both vary in the range [0,1] while
symbol · means the product of matrices.

Figure 2: Scheme of Bezier surface with control points.

Comparing 3D and 2D cases the number of values having an effect on the Bezier surface shape in 3D
problem is fairly big(16 · 3 values). In reality, like in 2D formulation, some of these values (coordinates
of Bezier control points) are defined by additional constraints resulting from the physical nature of the
problem. For example, the y and z-coordinates of the control points located on the ingot side surfaces and
on the symmetry surfaces are known, because the dimensions of the ingot are fully determined. Moreover,
the equality of the x-coordinate of appropriate control points ensures the existence of derivatives on the
symmetry surfaces.

In this paper, it was additionally assumed, that only x coordinate of the Bezier control points is
estimated. In fact, those values have main influence on the Bezier surface shape (Figure 2). All the
assumptions cause that the phase change front can be described by the following formula:

x(u, v) =


x00 x01 x02 x03

x10 x11 x12 x13

x20 x21 x22 x23

x30 x31 x32 x33

 ·


(1− u)3

3 (1− u)2 u
3 (1− u) u2

u3

 ·


(1− v)3

3 (1− v)2 v
3 (1− v) v2

v3


T

(14)

where xij is the first coordinate of Bezier control points, x(u, v) stands for x-coordinate of points on
Bezier surface and y(u, v) and z(u, v) are calculated analogously to (13). It should also be noted that in
reality the location of phase change front depends on five values only, i.e. x00, x11, x12, x21 and x22.

4. SENSITIVITY COEFFICIENTS
The calculation of the sensitivity coefficients requires solution of the set of direct problems similar to
the thermal one. Each of these problems arise through differentiation of equation (1) and corresponding
boundary conditions (2)-(5) with respect to the particular design variable yj . As mentioned before,
depending on the type of the considered problem, the design variable describes the boundary conditions
along the side surface of the ingot or the location of the phase change front. In both cases the resulting
field Zj is governed by an equation having the form:

∇2Zj(r) −
1
a

vx
∂Zj

∂x
= 0 (15)
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where Zj =
∂T

∂yj
and yj = qj in the inverse boundary problem or yj = vj in the inverse geometry

problem.

The inverse boundary problem - In the inverse boundary problem in which the boundary conditions
along ΓABFE and ΓBCGF are identified, the heat flux distribution has to be found.

Cooling conditions of the continuous casting process permit to assume that the heat flux distribution
varies mainly in the direction of pulling of the ingot (in direction orthogonal to the axis of symmetry
the heat flux is constant). It means that the heat flux distribution can be approximated by appropriate
spline function or broken line, based on n parameters which can be denoted as q(r) = f(q1, . . . , qn).
The number of these parameters does not affect the way of calculations and cause only increasing of the
number of the identified values. In the continuous casting of copper [9, 6] the heat flux varies linearly
along the mould and exponentially along the water spray. It means that the heat flux distribution is
described only by three values. In some other cases, e.g. in the continuous casting of alloy of aluminum, it
is better to approximate the heat flux distribution by broken line [13]. The heat fluxes qi are components
of vector Y whose estimation is an objective of the problem.

In the inverse boundary problem the sensitivity coefficients are calculated from the auxiliary direct
problem containing the governing equation (15) and homogenous boundary conditions along boundaries
ΓABCD, ΓDCGH , ΓADHE and ΓEFGH . Condition along the surfaces ΓABFE and ΓBCGF is nonhomoge-
neous and the whole system reads as:

Zj(r) = 0, r ε ΓABCD (16)

−λ
∂Zj

∂n
=

∂f(q1, q2, . . . , qn)
∂qj

r ε ΓABFE ∪ ΓBCGF (17)

Zj(r) = 0, r ε ΓEFGH (18)

−λ
∂Zj

∂n
= 0, r ε ΓADHE ∪ ΓDCGH (19)

where function f is an approximation of the heat flux distribution.
The calculated sensitivity coefficients are collected in the matrix Z and introduced into the system of

equations (7). It has to be noted that the inverse boundary problem is a linear one which allows to solve
it in non-iterative way.

The inverse geometry problem - In inverse geometrical problems, likewise in the boundary one,
differentiation of the boundary conditions (2)-(5) produces conditions for the sensitivity coefficient direct
problem. These conditions are of the same type as in the original thermal problem, but homogeneous. Of
course in this case the original thermal problem is differentiated with respect to the values vj determining
the location of the phase change front. Particularly, the boundary condition along the front ΓABCD is
obtained by differentiating equation (2) with respect to identified value vj . Because along this boundary
constant temperature Tm is expected, after differentiation the following equation is obtained:

∂T

∂vj
+

∂T

∂x
· ∂x

∂vj
+

∂T

∂y
· ∂y

∂vj
+

∂T

∂z
· ∂z

∂vj
= 0 (20)

According to the definition of the sensitivity coefficient Zj = ∂T
∂vj

the following equation is obtained:

Zj =
∂T

∂vj
= −

(
∂T

∂x
· ∂x

∂vj
+

∂T

∂y
· ∂y

∂vj
+

∂T

∂z
· ∂z

∂vj

)
(21)

Using vector representation of the Fourier Law, (21) can be rewritten as:

Zj =
∂T

∂vj
=

1
λ

(
qx ·

∂x

∂vj
+ qy ·

∂y

∂vj
+ qz ·

∂z

∂vj

)
(22)

where qx, qy and qz are components of the heat flux vector in the global coordinate system. It is important
to note that in heat transfer analysis, BEM solutions directly provide temperatures and heat fluxes at
the nodes (in local coordinate system connected with boundary element). Making use of these BEM
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solutions the heat fluxes are rewritten into the global coordinate system. Thus, the boundary condition
along the phase change surface has the form:

∂T

∂vj
=

qn

λ

(
nx

‖n‖
· ∂x

∂vj
+

ny

‖n‖
· ∂y

∂vj
+

nz

‖n‖
· ∂z

∂vj

)
(23)

where n = [nx, ny, nz] is the normal vector to the phase change surface and ‖n‖ means the length of n.
The derivatives of x y and z with respect to the design variable vj depend on the particular geometrical

representation of the phase change front. In presented calculations they are obtained by differentiation
of the formula (11) with respect to the design variable vj . As it was mentioned, in the presented work
only x-coordinates of the chosen Bezier control points are estimated. It means that partial derivatives of
y and z vanish

∂y

∂vj
=

∂z

∂vj
= 0. (24)

Finally (23) reduces into

Zi =
∂y

∂vj
=

∂T

∂yi
=

qn

λ
· nx

‖n‖
· ∂x

∂yi
(25)

The above derivation is valid in both 3D and 2D case (if need without parts connected with z coordinate).
It has to be noted that the inverse geometry problems are always non-linear. It means that the

iteration procedure has to be applied and this procedure is conducted till the convergence criteria are
satisfied.

5. NUMERICAL RESULTS
In the presented work 3D inverse boundary and inverse geometry problems were solved. The boundary
conditions and the phase change front location were estimated by using measurements generated numeri-
cally. Previous tests showed that the best results were obtained if sensors were located as close as possible
to the identified values. Thus, in the problems under consideration, the measurement points are arranged
at a uniform rate under interface between solid and liquid part. The orthogonal projection onto yz-plane
of the ingot and the thermocouples position (each of them collects five measurements) is presented in
Fig.3.

Figure 3: The orthogonal projection of ingot and sensor points onto yz-plane.

A majority of previous studies were devoted to boundary, geometry and combined boundary-geometry
inverse problems formulated as 2-dimensional ones [8, 11, 10, 7, 13]. In order to test the algorithm
verification, results obtained in 2D boundary-geometry inverse problem were additionally compared to
the results obtained by others authors [3]. Gained experience permits us to adapt the developed method
to 3D case. In order to show the main advantages of the proposed algorithms the continuous casting
problem from the copper industry was taken under consideration.

In these calculations it is assumed that the heat fluxes vary linearly along the mould and exponentially
along the water-sprayed boundary [11]. The following heat fluxes q1 = 1·106 W/m2, q2 = 5·104 W/m2 and
q3 = 1.5 · 106 W/m2 were accepted. All results were obtained for the melting temperature Tm = 1083oC
whereas the end temperature Ts was assumed to be 50oC. The phase change front has been modelled by
the Bezier surface.

3D Inverse Boundary Problem - The temperature measurements inside the ingot were simulated
numerically, adding random errors to the selected temperatures of reference field. Assumed measurement
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errors did not exceed 2%. The considerable influence of measurement accuracy on the quality of heat
fluxes estimation were presented in previous works concerning 2D problems [11, 10]. Exact and estimated
heat flux distributions obtained in 3D model are presented in Figure 4.

Figure 4: Comparison of exact and estimated heat flux distributions.

3D Inverse Geometry Problem - The considered problem is formulated like the one from previous
subsection. Now, it is assumed that the governing equation (1) and all the boundary conditions are
known. The location and shape of the phase change front need to be estimated. This front is modelled
by one Bezier surface.

The temperature measurements inside the ingot were simulated numerically and perturbated by the
random errors, which did not exceed 0.1%. Figure 5 presents the obtained agreement between measured
and calculated temperatures at some sensor points (collected by 4 thermocouples) after an iteration
procedure.

Figure 5: Measured and calculated temperatures at sensor points.

It has to be noted that differences between Tcal and U consist of the main part of the objective
function (6). Thus this difference is a primary criteria of the obtained results assessment.

Because in presented problem the exact values of estimated quantities were known, it is also possible
to compare the estimated and exact values of this quantities. Appropriate comparison is shown in the
following table:
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exact value calculated value
0.02 0.0207
0.05 0.077
0.1 0.087
0.25 0.2552
0.4 0.4012

The position and shape of estimated solid-liquid determined determined by the estimated values found
in the iteration procedure and presented in the table is shown in Figure 6.

Figure 6: The phase change front location.

It has to be noted that on the contrary to the direct problems, in non-linear inverse problems, existence
and uniqueness of solution is not obvious. Some of starting values may not fulfil the conditions allowing
to solve the problem. Because of this, in discussed inverse geometry problem application of lumping
procedure turned out to be necessary [7, 10]. This approach provides such a correction of initial front
location that the process is convergent. The results presented above were obtained after application of
this approach.

6. CONCLUSIONS
Results presented in the paper show that the extension of the geometry and the boundary inverse algo-
rithms to the 3D case is possible. The proposed algorithm is a generalization of the method developed
for 2D problems and does not require to be solved as a separate problem.

In order to limit the number of identified values, the phase change front was modelled by the Bezier
surface and the heat flux distribution was approximated using the same concept.

The results obtained allow to think that the algorithms presented in the paper can be used in combined
inverse boundary and geometry problem in 3D case and eventually in an industrial applications.
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